On the boundedness of solutions of difference-differential equations
نویسندگان
چکیده
منابع مشابه
On the Boundedness of Solutions of Nonlinear Differential and Difference Equations
as 23i-i lz*l +|«'t|—»0, for fixed /. Systems of the form (1.1) are of considerable interest in dynamics, and play an important role in many branches of applied mathematics. Usually the right-hand side does not involve any derivatives. In dynamics, where t represents the time, a natural problem is the determination of the behavior of the solutions for large values of the time, and this is the c...
متن کاملBoundedness of Solutions to Linear Differential Equations
In the case of a linear constant coefficient differential equation, & = Ax, where x is a (complex) n-vector and A is a (complex) nXn matrix, it is well known when all solutions are bounded; namely, if all eigenvalues of A are purely imaginary and all elementary divisions of A are simple. This condition is equivalent to the Jordan normal form, / , of A being (Hermitian) skew symmetric. That is i...
متن کاملOn meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملLiouvillian Solutions of Difference-Differential Equations
For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y ) = AY, δ(Y ) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. We will give an algorithm to decide whether such a system has liouvillian solutions when k = C(x, t), σ(x) = x+ 1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1960
ISSN: 0386-2194
DOI: 10.3792/pja/1195523938